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Modifications to ASHRAE’s sizing method for
vertical ground heat exchangers

MOHAMMADAMIN AHMADFARD and MICHEL BERNIER∗

Department of Mechanical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal H3T 1J4, Canada

The current article proposes modifications to the ASHRAE sizing equation for vertical ground heat exchangers. The proposed
method uses the same three pulse approach as the current sizing equation but uses g-functions to calculate the effective ground
thermal resistances. One key feature of the iterative methodology is the ability to calculate new g-functions as the geometry morphs
during the solution process. Long-term g-functions are evaluated analytically using the finite line source (FLS) solution over borehole
segments while so-called short-term g-functions are calculated based on a hybrid analytical/numerical method to account for the
borehole thermal capacity. The current article examines three aspects of the proposed methodology. First, it is shown that the time-
consuming evaluation of the full g-function curve, typically obtained by temporal superposition, is not necessarily required. Second,
the optimum number of borehole segments to obtain an accurate bore field length with reasonable calculation time is examined.
The selection of a convergence criteria and its impact on calculation time is also discussed. The excellent agreement between results
obtained with the proposed alternative method and the ones obtained from other design software tools confirms the validity of the
proposed method. Finally, it is shown that short-term effects can have a relatively significant effect on the calculation of the required
borehole length.

Introduction

Accurate sizing of vertical ground heat exchangers (GHEs)
for ground source heat pump (GSHP) systems is important to
limit drilling costs and avoid operational problems. A typical
GSHP system is presented schematically in Figure 1 where
a fluid loop links a series of heat pumps to six boreholes
(in a 3 × 2 configuration). In this figure, D is the borehole
buried depth, H is the borehole length, B is the borehole
spacing, rb is the boreholes radius, rp is the pipe radius of
the U-tube pipes and dp is the center-to-center pipe distance.
The important ground properties are the temperature Tg,
the thermal conductivity kg, and the thermal diffusivity,
αg.

As shown in Figure 1, GHEs are usually piped in parallel
and it is generally assumed that the total flow rate is divided
equally among all boreholes and that each borehole has the
same inlet temperature. The heat pump inlet temperature,

Received April 16, 2017; accepted December 18, 2017
Mohammadamin Ahmadfard is Student Member ASHRAE and
a PhD student. Michel Bernier, PE, PhD is Fellow ASHRAE and
a Professor.
∗Corresponding author e-mail: michel.bernier@polymtl.ca
Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/uhvc.

Tin,hp, is the average of the outlet temperatures of all bore-
holes. This temperature must remain within limits set by heat
pump manufacturers. The lower limit for the inlet tempera-
ture, TL, can be as low as �–5°C while the high temperature
limit TH can reach �45°C.

Equation-based design methods (ASHRAE Handbook
1995; Bose et al. 1985) and simulation-based design meth-
ods (Hellström and Sanner 2000; Spitler 2000) can be used
to size boreholes. Spitler and Bernier (2016) have categorized
these methodologies into five levels (0 to 4) with increasing
complexities and accuracy. Level 0 are rules-of-thumb siz-
ing methods, level 1 and 2 cover the equation based mod-
els that use one or three ground load pulses while level 3
and 4 are simulation based sizing models that use monthly
or annual hourly ground loads. Most of these models use a
derivative of Equation 1 for determination of the boreholes
length.

L =
∑N

i=1 qiRi + qhRb

Tm − (
Tg + Tp

) , (1)

where L (= Nb × H , Nb is the number of boreholes) is the
total required borehole length, qi is a ground thermal pulse
associated with a certain time period, Ri is the correspond-
ing effective ground thermal resistance, qh is the peak ground
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Fig. 1. Schematic illustration of a typical GSHP system.

thermal pulse, Rb is the effective steady-state borehole ther-
mal resistance, Tm is the mean borehole fluid temperature
(= (TinHP + ToutHP)/2)), and Tp is a temperature penalty to
account for the ground temperature increase (or decrease)
caused by borehole-to-borehole thermal interaction when the
annual ground load imbalance is important. This equation
can be used by one pulse (level 1), three pulses (level 2),
monthly pulses (level 3), and hourly pulses (level 4) and can be
solved directly or iteratively when values of Ri depend on L.
By increasing the number of load pulses the accuracy of the
sizing model increases at the expense of increased mathemati-
cal complexity and calculation time. Among these models, the
ASHRAE sizing equation, a level 2 method, is a good com-
promise between accuracy and calculation time.

The original ASHRAE sizing method, which is based
on the work of Kavanaugh (1995), first appeared in the
ASHRAE Handbook (1995). The original format of this
equation has been reformatted by Bernier (2006) and is pre-
sented in Equation 2. This equation will be referred to as the
ASHRAE classic sizing equation.

L = qaRga + qmRgm + qhRgh + qhRb

Tm − (Tg + Tp)
. (2)

The summation term includes three thermal pulses and
their corresponding effective ground thermal resistances. The
time periods of the three thermal pulses, qa, qm, and qh
are typically 10 years, 1 month, and 4 hours (or 6 hours
in certain cases), respectively. The corresponding effective
ground thermal resistances, Rga, Rgm, and Rgd are calculated
using the infinite one-dimensional (1D; radial) cylindrical
heat source (ICS) analytical solution and they do not depend
on borehole length. Borehole-to-borehole thermal interac-
tion is accounted for using the temperature penalty term in
the denominator. The main advantage of the ASHRAE siz-
ing equation is that it can be solved directly and it does not
require an iterative solution procedure when tabulated val-
ues of Tp are used directly. However, if Tp needs to be cal-
culated for a specific geometry, then Equation 2 needs to be
solved iteratively as Tp depends on the borehole length. It
should be noted that if the annual ground load is balanced
(i.e., qa = 0), the calculations of Tp and Rga are irrelevant and
the ICS solution is adequate for sizing purposes. Despite its

simplicity, several authors have noted important deficiencies
in the ASHRAE sizing equation:

1. The ICS used for evaluating the ground thermal resis-
tances neglects axial heat transfer.

2. The temperature penalty calculation is inaccurate.
3. It does not size the length correctly if the maximum length

is required in the first year of operation.
4. It does not account for short-term effects associated with

borehole thermal capacity.
5. The value of the steady-state borehole thermal resistance

does not account for the impact of the vertical tempera-
ture variation of the fluid inside the U-shaped tubes.

In the following paragraphs, solutions to these issues pro-
posed by various authors are reviewed and then the proposed
model is described.

Philippe et al. (2009) focused on the first deficiency. They
determined the impact of neglecting the axial effects on the
three ground thermal resistances. Their analysis showed that
the 10-year effective ground thermal resistance, Rga, is the
most affected and as noted by Spitler and Bernier (2016), the
weight of Rga in Equation 2 determines whether it has a sig-
nificant impact on L or not.

The second drawback is much more important. It con-
cerns the determination of the temperature penalty (Tp in
Equation 2) which is suggested to be evaluated based on a
rudimentary table of values on a limited number of config-
urations (ASHRAE 2015). This has motivated researchers
Bernier et al. (2008), Fossa (2011), Fossa and Rolando (2013)
and Capozza et al. (2012) to introduce various methodolo-
gies based on a more rigorous evaluation of the temperature
penalty.

Bernier et al. (2008) evaluated Tp based on the difference
between the g-function for a specific bore field with Nb bore-
holes, gNb, and the g-function of a single borehole, g1. They
proposed a correlation that evaluates the temperature penalty
of equally spaced rectangular bore fields which is within
±10% of the exact values, when gNb-g1>15. Their results show
that the ASHRAE equation can underestimate the value of
Tp significantly. This methodology was used by Philippe et al.
(2010) in a simple spreadsheet tool to obtain the length of sin-
gle boreholes and rectangular bore fields. Since the tempera-
ture penalties depend on borehole length, which is unknown
a priori, iterations are required.

Fossa (2011) has proposed a different definition for Tp. He
has defined a “true or reference” temperature penalty to cor-
rect the error introduced by the use of the ICS solution when
compared to the g-function of the bore field under consid-
eration. Therefore, the temperature penalty of a single bore-
hole is not zero as was the case in the study by Bernier et al.
(2008). Fossa and Rolando (2013, 2015, 2016) have suggested
a correlated equation (called Tp8) which examines the influ-
ence of eight surrounding boreholes. They have reported that
the ASHRAE equation typically underestimates the “true”
temperature penalty values by more than 40% (Fossa and
Rolando 2015). The lengths evaluated based on the temper-
ature penalties obtained from the ASHRAE equation have
errors ranging from 17% to 50% while the ones evaluated
with their proposed correlated equation have an average error
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of 3% with respect to reference values (Fossa and Rolando 
2015). Finally, they showed that the correlation suggested by 
Bernier et al. (2008) has a difference of less than 6% with their 
reference method for the rectangular and square bore fields.

Monzó et al. (2016) focused on the second and the third 
weak points of the classic ASHRAE sizing equation. They 
proposed to use the same three-pulse technique used in the 
ASHRAE sizing method with two modifications. First, the 
yearly ground load is replaced by the average ground load of
the previous months. Second, the temperature penalty, Tp, is  
based on the average ground load of the previous months and 
is evaluated using g-functions. The methodology involves a 
three-step process. First, ground loads need to be analyzed 
and properly ordered. Then, using these loads, and assuming
a temperature penalty Tp = 0, a first set of required lengths is 
determined for each month. Finally, an iterative process is ini-
tiated to account for the temperature penalty in each month 
to obtain the final required length for the worst condition. 
Monzó et al. (2016) have shown that the starting month can 
have a significant impact on the design length equation. Their 
proposed method compares favorably well with a commercial 
software tool.

Short-term effects have been analyzed by several authors 
and a complete literature review on the subject has been pre-
sented by Li and Lai (2015). Yavuzturk and Spitler (1999) 
were among the first to evaluate these effects. They used a 
two-dimensional (2D) finite volume method and calculated 
short-term g-functions. Others (Pasquier and Marcotte 2012; 
Ruiz-Calvo et al. 2015; Zarrella et al. 2011) have used ther-
mal resistance-capacity (TRC) networks to study these effects. 
This problem can also be solved by simplifying the geometry 
in the borehole with an equivalent-diameter hollow cylinder 
(Claesson and Javed 2011; Lamarche and Beauchamp 2007; 
Salim-Shirazi and Bernier 2013). Such models can be solved 
in the Laplace domain (Bandyopadhyay et al. 2008; Beier and 
Smith 2003) or in the time domain (Javed and Claesson 2011; 
Lamarche 2015; Lamarche and Beauchamp 2007). Another 
way of accounting for short-term effects, without transform-
ing the geometry into an equivalent diameter, is to use the 
infinite line source model in a cylindrical composite medium 
(Li and Lai 2012; Yang and Li 2014). This approach can be 
used for modeling various types of GHEs, including single 
and double U-shaped tubes, W-shaped channels, and helical-
coils. However, since the infinite line source model does not 
account for the annual load imbalances, it cannot be used for 
a long-term thermal processes.

Other authors have investigated the impacts of short-term 
effects on the borehole length evaluated by the ASHRAE 
equation. Lamarche (2016) used an alternative model to the 
ASHRAE equation that uses g-function to determine the 
ground thermal resistances. He observed that by neglecting 
the thermal capacity of the boreholes the length is somewhat 
oversized, especially when the hourly peak ground load is 
much larger than the monthly ground load. Gagné-Boisvert 
and Bernier (2016) took into account the thermal capacity 
inside the borehole and heat pump cycling. Running annual 
simulations with a TRC model they proposed to multiply 
the ASHRAE sizing equation by a correction factor. The 
correction factor can reach 0.69 when oversized heat pumps
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operate intermittently and 1.24 for undersized heat pumps 
and low thermal capacity boreholes.

Li et al. (2017) suggested an alternative to the ASHRAE 
sizing equation that considers not only the short-term effects 
but also account for the vertical temperature variation of the 
fluid inside the U-tubes. The quasi-three-dimensional (3D) 
model uses a full-scale line source model for heat transfer out-
side the U-tubes that accounts for the short-term (with the use 
of the composite medium solution), the mid-term (with the 
use of the infinite line source solution), the long-term tem-
perature responses, and also the thermal interaction between 
the boreholes (with the use of the FLS solution). The pro-
posed method is applied to the four test cases introduced by 
Cullin et al. (2015) and it is shown that the borehole lengths 
evaluated with their proposed method are closer to the actual 
lengths and are also shorter than the ones evaluated by the 
classic ASHRAE sizing equation.

Some authors have argued that the errors in the ASHRAE 
sizing equation are caused by the use of only three load 
pulses. For instance, Cullin et al. (2014) compared the sizing 
ASHRAE equation with GLHEpro in sizing of a 3 × 2 bore 
field. The results showed that GLHEPro under predicted the 
required GHE length by 4% when compared to the actual 
length, while the ASHRAE sizing method lead to an over 
prediction of 103%. Later, Cullin et al. (2015) used the same 
design tool and the ASHRAE sizing equation to evaluate the 
design lengths of four different systems with operating data. 
The GLHEPro tool predicted the borehole lengths to within 
6% in all four cases, while the ASHRAE sizing equation eval-
uated lengths with errors ranging from –21% to 167%. The 
authors explained that most of the error is related to the way 
that loads are represented in the ASHRAE sizing equation 
while the differences related to the borehole thermal resis-
tance are less important.

In summary, past studies indicate that the ASHRAE sizing 
equation has several drawbacks including: (1) the use of the 
1D infinite cylinder solution for long time which is inadequate 
for the long-term effective ground thermal resistances; (2)  the
inappropriate calculation of the temperature penalty, Tp;  (3) 
the noninclusion of borehole thermal capacity or variation 
of the vertical fluid temperature along the U-tubes; (4)  the  
inability of the method to find the maximum length during the 
first year of operation. In the current article, an alternative to 
the ASHRAE sizing equation is proposed to alleviate the first 
three deficiencies. The fourth drawback has been examined 
by Monzó et al. (2016) and will not be covered in the present 
article.

The alternative method proposed in the current article 
has first been introduced by Ahmadfard and Bernier (2014). 
It is also included in the latest version of the ASHRAE 
Handbook (ASHRAE 2015) in a separate section entitled 
“Alternative sizing method.” The article expands the analysis 
provided by Ahmadfard and Bernier (2014) and examines 
four aspects of this new methodology. First, it is shown that 
the time-consuming evaluation of the full g-function curve, 
typically obtained by temporal superposition, is not neces-
sarily required. Second, the optimum number of borehole 
segments to obtain an accurate bore field length with reason-
able calculation time is examined. In addition, the selection
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of a convergence criteria and its impact on calculation time
is discussed. Finally, the alternative method is modified to
account for short-term effects. The proposed alternative
method is presented in the next section and is then applied
for sizing various bore field configurations and compared to
other sizing tools in the following sections.

Modifications to ASHRAE’s classic sizing equation

As shown in Equation 3, the alternative method uses the
same three pulse methodology as the classic ASHRAE sizing
equation.

L = qaRga,g + qmRgm,g + qhRgh,g + qhRb

Tm − Tg
. (3)

The three ground pulses, qa, qm, and qh are applied over
time periods which are typically equal to 10 years (ty), 1
month (tm), and 4 or 6 hours (th), respectively. The corre-
sponding ground thermal resistances, Rga,g, Rgm,g, Rgd,g are
evaluated based on the principle of temporal superposition
(ASHRAE 1995, 2015):

Rga,g = [g(t f ) − g(t f −t1 )]/2πkg

Rgm,g = [g(t f −t1 ) − g(t f −t2 )]/2πkg

Rgd,g = [g(t f −t2 )]/2πkg, (4)

where t f = ty + tm + th, t2 = ty + tm and t1 = ty. The sub-
script “g” denotes that the effective ground thermal resis-
tances are evaluated using g-functions. g-Functions account
for the thermal interactions among boreholes and the cor-
rection provided by the temperature penalty in the classic
ASHRAE sizing equation is no longer required. When
short-term effects caused by borehole thermal capacity are
important, short-term g-functions should be used for the
g(t f −t2 ) term which is present in Rgm,g, Rgd,g. The determina-
tion of short-term g-functions will be addressed later in the
current article.

As explained by Bernier (2014), long-term g-functions
depend mainly on three nondimensional parameters: rb/H ,
B/H , and t/ts where ts is the characteristic time (= H2/9α).
The main drawback of the proposed alternative method is
that an iterative procedure is required because g-functions
depend on the length of the borehole which is unknown a
priori. Most of the current commercially available sizing pro-
grams use a pre-stored data base of g-functions with specific
rb/H and B/H ratios. For values of B/H other than the ones
associated with the g-functions, logarithmic interpolation
between pre-computed g-functions can be used. However,
as stated by Malayappan and Spitler (2013), interpolation
may result in sizing errors of a few percent. For values of
rb/H different than the ones associated with the g-functions,
Eskilson (1987) recommends applying a correction factor
but it is also unclear if this correction factor applies to all
cases.

For cases where rb/H and B/H ratios are different, correc-
tion factors for rb/H or interpolation between different B/H
curves are required. The method suggested in the article does

Fig. 2. Illustration of the five-step procedure for the alternative
method.

not need to use any correction factors or interpolation as it
uses the exact values of rb/H , B/H and ln(t/ts) in each iter-
ation. In addition, the g-function values required at the vari-
ous time are evaluated independently of previous g-functions
as the temporal superposition is not used for the evaluation
of g-functions. In this way, g-functions are evaluated dynam-
ically as the calculation to obtain L progresses from iteration
to iteration.

Figure 2 shows schematically the five-step iteration pro-
cedure of the alternative method. A guess value of Li=
(Nb× Hi) is first selected. Using this guess value, three
g-functions are evaluated based on the proper values of
ln(t/ts,i ), rb/Hi and B/Hi. The whole g-function curve does
not need to be evaluated since only three g-function values
corresponding to three time periods, t f − t2, t f − t1 and t f
are required in each iteration. In the third step, the three
g-functions are used to calculate the effective ground thermal
resistances (Equation 4) which are then used, in step 4, to
evaluate the required borehole length Lii (Equation 3). This
length Lii is then compared to the guessed or the previous
length Li. If the two lengths agree to within a certain toler-
ance ε, then the solution is said to have converged. If not,
the length Lii is then used as the new guess value for the next
iteration.

Evaluation of g-functions

The approach suggested by Cimmino and Bernier (2013,
2014) is used to determine g-functions over the full-time scale.
This approach can generate g-functions for any bore field
geometry. Each borehole is subdivided into a number of seg-
ments and the thermal response of every borehole segment
is calculated using the FLS analytical solution. Then, spatial
superposition is used to calculate the total temperature vari-
ation at the borehole wall of every segment. While Cimmino
and Bernier (2013, 2014) solved their equation in the Laplace
domain, the equations developed here are solved in the time
domain.
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Fig. 3. Schematic illustration of the thermal interaction of all
boreholes segments toward segment #1.

The process of generating g-functions is shown in Figure 3
for a 3 × 2 configuration where each borehole is subdivided
into two equal length segments (Hi = H/2) giving a total of
12 segments. The thermal interactions of all segments toward
segment #1, including segment #1 on itself, are illustrated
schematically on this figure. In accordance with Eskilson’s
definition of the g-function, the borehole wall temperature
Tb is the same for every borehole segments in the bore field.
This condition is referred to as boundary condition #3 (BC-
III) by Cimmino and Bernier (2014). The heat extraction rate
per unit length Qi of each segment is assumed uniform along
its length. The total heat extraction rate per unit length Q̄ of
all boreholes is considered fixed and constant in time. The
ground thermal properties are assumed to be isotropic and
constant.

In order to evaluate the g-functions for a certain heat
extraction rate Q̄ at a certain time tk, the thermal response,
hi, j (tk) among all segments i (1:12) toward each segment j
(1:12) need to be calculated. These interactions are evalu-
ated analytically using the FLS following the approach of
Cimmino and Bernier (2013):

hi, j (tk) = 1
2

∫ ∞

1/
√

4αgtk

exp
(
−r2

i, j s
2
) Y

(
Hss, Dis, Djs

)
Hjs2

ds, (5)

where

Y (Hss, Dis, Djs) = f ((Dj − Di + Hs)s)

+ f ((Dj − Di − Hs)s) + 2 f ((Dj + Di + Hs)s)

− 2 f ((Dj − Di )s)

− f ((Dj + Di )s) − f ((Dj + Di + 2Hs)s),

and

f (x) = x.er f x − (1 − exp(−x2))/
√

π,
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er f is the error function, Hs are the segment lengths, Di and 
D j are the depths of the borehole segments i and j from 
the ground surface, and ri, j is the radial distance between 
segments i and j. Cimmino and Bernier (2013) modified the 
original approach of Claesson and Javed (2011) to account 
for various borehole depth and heat extraction rate variation 
using borehole segments.

The radial distance of segments located in the same bore-
hole is equal to rb. Thermal response values can be reorga-
nized in a square (12 × 12 in this example) matrix as follows:

⎡
⎢⎢⎢⎢⎣

h1,1 h2,1 · · · h11,1 h12,1
h1,2 h2,2 h11,1 h12,2

...
. . .

...
h1,11 h2,11 · · · h11,11 h12,11
h1,12 h2,12 h11,12 h12,12

⎤
⎥⎥⎥⎥⎦ . (6)

Because of symmetry, some terms in this H-matrix are
identical (h1,12 = h3,10, for example). In these cases, the pro-
posed methodology calculates h only once to limit calcula-
tion time. The segment-to-segment thermal response factor
(Equation 5) needs to be multiplied by the corresponding
nondimensional heat extraction rate of each segment. For a
typical segment j the following equation is then applied:

h1, j Q̃1 (tk) + h2, j Q̃2 (tk) + · · · + h11, j Q̃11 (tk)

+ h12, j Q̃12 (tk) + θ∗
b, j (tk) = θb (tk) , (7)

where θb(tk) is the nondimensional temperature variation at
the borehole wall (which is the same for all segments) at time
tk . This value is in fact the g-function. The nondimensional
heat extraction rate per unit length of each segment i is given
by Q̃i(tk)(= Qi(tk)/Q̄). The product hi, j Q̃i(tk) accounts for the
nondimensional temperature variation at the borehole wall of
the jth borehole segment due to the extraction/injection of
heat by the ith borehole segment at time tk. θ∗

b, j (tk) is a term
that accounts for the “history-effect” of the time variation of
the heat extraction rates. This term has been determined by
Cimmino and Bernier (2013) and can be evaluated with the
following expression:

θ∗
b, j (tk) =

⎡
⎣k−1∑

p=1

Nb.Ns=12∑
i=1

hi, j
(
tk − tp−1

)
q̃i

(
tp

)⎤⎦
− hi, j (tk − tk−1) Q̃i (tk−1) . (8)

In this equation, q̃i(tp) is equal to Q̃i(tp) − Q̃i(tp−1), where
p is the time step counter. As shown in Equation 8, θ∗

b, j uses
temporal superposition. The heat extraction rates and the
thermal interactions related to the k − 1 previous time steps,
are needed to evaluate the g-function at tk.

In the Nb × Ns equations (Equation 7), there are Nb × Ns
unknown heat extraction rates, Q̃i=1:12, and one unknown
g-function, θb(tk). The last equation to close the problem
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is based on the fact that the total heat extraction rate is
constant:

Nb.Ns∑
i=1

Q̃i (tk) = Nb.Ns → Q̃1 (tk) + Q̃2 (tk)

+ · · · + Q̃11 (tk) + Q̃12 (tk) = 12. (9)

Finally, the system of equations can be re-casted in the
following matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

h1,1 h2,1 · · · h11,1 h12,1
h1,2 h2,2 h11,2 h12,2

...
. . .

...
h1,11 h2,11 · · · h11,11 h12,11
h1,12 h2,12 · · · h11,12 h12,12

⎤
⎥⎥⎥⎥⎦

−1
−1

...
−1
−1

1 1 · · · 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q̃1 (tk)
Q̃2 (tk)

...
Q̃11 (tk)
Q̃12 (tk)
θb (tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θ∗
b,1

θ∗
b,2
...

θ∗
b,11

θ∗
b,12

Nb.Ns = 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

By solving this system of equations, the 12 heat extrac-
tions Q̃i(tk) as well as the g-function θb(tk) are obtained at
time tk. Equation 10 is the resulting system of equations for
the 3 × 2 configuration with 2 segments per borehole. As can
be expected, calculation time increases significantly with an
increase in the number of boreholes and borehole segments.
In addition, as will be shown later, asymmetric bore fields also
lead to long calculation times.

As shown later in the article, the evaluation of θ∗
b, j can

potentially be neglected for bore field sizing purposes. Con-
sequently, g-functions can be evaluated without considering
temporal superposition of heat extraction rates at previous
time steps. Thus, the value of the heat extraction rates of all
segments as well as the g-functions are evaluated directly at
time tk. As will be shown below, the generation of g-functions
without temporal superposition reduces computational time
significantly which is an important aspect of the proposed
alternative method since g-functions are evaluated several
times in the iterative process.

It should be pointed out that the methodology that is
described here for the evaluation of g-functions is not specific
to the ASHRAE sizing equation but can be used whenever
g-functions are required.

Neglecting temporal superposition when generating g-functions
values

Bore field sizing using the proposed alternative method
(Equation 3) requires g-function at three time values on the
g-function curve (Figure 2) for each iteration. Typically, as
shown below, 3 to 5 iterations are required. Thus, 9 to 15 g-
function values are required to size a bore field. There are sev-
eral ways to obtain these g-function values. First, as noted

in the introduction, pre-calculated g-function curves can be
used. However, these are typically valid for fixed values of
B/H and rb/H . It is possible to interpolate between B/H
curves and correct for various rb/H ratio but with a lost in
accuracy which is difficult to quantify.

Second, one can generate the entire g-function curve for
the exact B/H and rb/H ratios by solving Equation 10 at sev-
eral times, tk. Temporal superposition is used to account for
the “history-effect” of the time variation of the heat extraction
rates of the borehole segments. Then, the three g-function
values would be obtained by interpolation on the g-function
curve. This process would have to be repeated three to five
times depending on the number of iterations. Cimmino and
Bernier (2013) evaluated the entire curve based on 71 individ-
ual values of tk . They used time steps of one hour for the first
48 hours and then they doubled the time step for each subse-
quent time to cover the full time span of the g-function curve.
In the present work, the same technique is employed but with
19 individual values of tk evaluated at times corresponding to
ln(t/ts) = –14, –13, . . . , 3, 4. This accelerates the evaluation
of the g-functions curve when compared to the technique of
Cimmino and Bernier (2013). In sizing problems discussed
later in the article that are solved with temporal superposi-
tion, 19 g-functions values are calculated in each iteration
and then the three g-functions are interpolated from these
values.

The third method which is even faster and is the one rec-
ommended here, is to calculate the g-function directly at the
required value of ln(tk/ts) without temporal superposition.
Thus, the θ∗

b, j (tk) term in Equation 10 is considered to be equal
to zero. Until now most researchers used temporal superposi-
tion to obtain g-functions (e.g., Cimmino and Bernier 2013).
However, as shown later in the current article, this is not
necessary.

The accuracy of a direct calculation of the g-function with-
out temporal superposition will now be evaluated for several
bore field configurations. The first configuration to be studied
is a 12 × 10 bore field with H = 100 m, D = 4 m, rb = 75
mm and B = 6.5 m. The g-functions are calculated with 12
equal-length segments. Figure 4a shows g-function curves
evaluated using the three techniques just described with the
bottom graph showing the relative difference between the
technique without temporal superposition and two methods
with temporal superposition where the entire g-function curve
is generated with either 19 or 71 points. The maximum relative
difference of the results is approximately 2.9% (with the 71-
point curve) and occurs at a value of ln(t/ts) ≈ −1 where the
g-function curve has its steepest slope. As shown on the top
scale, this value corresponds to a time of 15 years for a 100 m
borehole and a ground thermal diffusivity of 0.075 m2/day. If
this borehole is to be sized for a 10- to 20-year period, then the
value of Rga,g will be the one most affected by this difference.
However, as will be shown later in the article, the overall effect
of this difference on bore field length is minimum since the
Rga,g term is typically not the dominant term in Equation 3.

Figure 4b shows three series of curves. The upper
and lower curves show, respectively, the time varia-
tion of

∑k−1
p=1

∑Nb.Ns=12
i=1 hi, j (tk − tp−1)q̃i(tp) and of −hi, j (tk −

tk−1)Q̃i(tk−1) for all segments. The summation of these values
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Fig. 4. a. g-Function curves determined with and without the temporal superposition and their relative difference; b. Variation of θ∗
b

as a function of nondimensional time.

Fig. 5. The effect of the number of segments and number of bore-
holes on �, the maximum difference between g-functions evalu-
ated with and without temporal superposition.

is equal to θ∗
b, j , represented by the middle curves. As expected,

the values of θ∗
b, j �= 0 for ln(t/ts) ≈ −1 which explains the dif-

ference observed in the g-function value in Figure 4a.
Figure 5 presents the maximum relative difference of the

g-functions obtained with temporal superposition for 19
tk values and the ones that are evaluated without temporal
superposition as a function of the number of segments. In
addition to the 12 × 10 configuration, the comparisons are
done for two other configurations of 6 × 5 and 3 × 2 bore-
holes. For each of these cases, the input parameters are the
same as those used for Figure 4.

These results show that the maximum difference, typi-
cally occurring at ln(t/ts) ≈ −1, between the two methods
increases with the number of boreholes. This is due to
increased thermal interactions between boreholes that cause
greater time variations of the heat extraction rates. The max-
imum difference also increases with the number of segments

up to a certain point around 12 to 15 segments where the
maximum difference stabilizes.

Verification of the proposed alternative method

The previous section examined the impact of calculating g-
functions without temporal superposition. This section looks
more closely at the accuracy of the proposed method for
sizing of vertical GHEs. Therefore, the methodology is first
compared with other sizing tools for six different borehole
configurations. Then, the effects of temporal superposition,
number of borehole segments, convergence criteria, and initial
guesses are evaluated separately for a typical sizing problem.
Finally, the effects of these parameters and also the effect of
bore field symmetry on the calculation time and the boreholes
overall length are discussed for two borehole configurations.

Ground loads and input parameters used in the comparisons
The ground load profile used in the current article is presented
in Figure 6 where negative loads indicate that the building
is in heating mode and that the GHX collects heat from the
ground. The same annual load is repeated for a 10-year cycle.

Fig. 6. Ground loads used in the comparison cases.
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Table 1. Monthly average and peak ground loads in cooling and heating.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec

qm (kW) –146.4 –144.7 –123.0 –74.5 –17.6 31.0 41.9 30.6 –14.5 –62.3 –98.1 –136.0
qh,C (kW) 0.0 0.0 0.0 30.5 225.1 304.4 345.5 323.1 231.5 201.4 0.0 0.0
qh,H (kW) –443.9 –428.0 –362.4 –309.2 –186.2 –108.9 –70.2 –170.1 –228.1 –297.2 –383.7 –415.8

It is an unbalanced load which causes the ground to get pro-
gressively cooler from year to year.

Table 1 provides a monthly summary of this load profile.
The average ground loads of each month, qm, are evaluated
based on the average of all hourly loads of that month includ-
ing the two heating and cooling peaks, qh,C and qh,H , occur-
ring during that month. Considering that the largest peak
heating load (–443.9 kW) is larger than the largest peak cool-
ing load (345.5 kW), and that there is a negative thermal
imbalance, the required bore field length will be determined
when the building is in peak heating mode. Therefore, only
the required bore field length in heating will be evaluated here.
Corresponding ground loads to be used for three pulse meth-
ods are presented in Table 2.

The borehole parameters and ground properties used in
the following analysis are reported in Table 3. It should be
noted that the minimum entering fluid temperature limit, TL
and the undisturbed ground temperature are set to 0°C and
18°C, respectively.

These loads are used for six different borehole configura-
tions which are shown on the first row in Table 4.

With the conditions presented in Table 3 and with the
ground load profile given in Figure 6, 120 boreholes (12 ×
10) each with a length of approximately 100 m are required.
This configuration represents the base case (5th column in
Table 4). Other test cases, with a lower or larger number
of boreholes, use a load profile which is proportional to
the number of boreholes. Hence, a geometry with 25 bore-
holes will have values of qa, qm, and qh which correspond to
25/120 times the value presented in Tables 1 and 2. Sizing
with the proposed method is performed using three thermal
pulses with ty = 10 years, tm = 1 month, and th = 6 hours.

Comparison with other sizing methods
In the current section, the proposed method is compared
with four other sizing tools/methods. These methods will
be described briefly. None of these methods account for
short-term effects caused by borehole thermal capacity. These
effects will be discussed later in the article.

Table 2. Annual, monthly, and hourly ground
loads used by the three pulse methods.

Ground loads (kW)

qh –443.9
qm –146.4
qa –59.0

The commercial sizing tool called Earth Energy Designer
(EED; Blomberg et al. 2015) uses a data base of pre-
calculated g-functions to size bore fields. The program
interpolates between g-function values by keeping the bore-
hole spacing constant but changing borehole depth. The
data base includes g-functions for the in-line, L, U, O and

Table 3. Borehole parameters and ground thermal properties.

Parameter Value

Ground
Ground thermal
conductivity (kg)

1.8 W/(m.K)

Ground thermal diffusivity
(αg)

0.075 m2/day

Undisturbed ground
temperature (Tg)

18°C

Bore field
Borehole buried depth (D) 4 m
Borehole spacing (B) 6.5 m

Borehole
Borehole radius (rb) 75 mm
Number of pipes 2
Pipe outer radius (rp,out ) 16.7 mm
Pipe inner radius (rp,in) 13 mm
Center to center distance
between pipes (dp)

62 mm

Pipe thermal conductivity
(kp)

0.4 W/(m.K)

Pipe volumetric heat capacity 1540 kJ/(K.m3)
Grout thermal conductivity
(kgr)

1 W/(m.K)

Grout volumetric heat
capacity

3900 kJ/(K.m3)

Contact resistance (Rc) 0 W/(m.K)
Resulting borehole thermal
resistance (Rb)

0.20 m.K/W

Fluid
Fluid viscosity (μ f ) 0.00179 kg/(m.s)
Fluid density (ρ f ) 1016 kg/m3

Fluid specific heat capacity
(C)

4000 J/(kg.K)

Fluid thermal conductivity
(k f )

0.513 W/(m.K)

Fluid flow rate (ṁ) 0.043 kg/s per kW
of peak load

Minimum entering fluid
temperature limit (TL)

0°C

Convection coefficient (hconv ) 1000 W/(m2.K)
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Table 4. Comparison between the proposed method and four other sizing tool.

19: (9,1,9) 25: (1 × 25) 28: (9,1,8,1, 9)
36:

(8,1,8,1,8,1,8,1) 120: (12 × 10)
127:

Axisymmetric

Bore field geometry
Borehole length (m)

(Percentage difference relative to the proposed method without temporal superposition)

Proposed method
without temporal
superposition

77.0 76.8 77.6 78.9 106.1 112.6

Proposed method
with temporal
superposition

77.1 (0.1) 76.9 (0.1) 77.7 (0.1) 80.0 (0.1) 107.4 (1.2) 114.1 (1.3)

EED 79.8 (3.7) 77.4 (0.9) 77.2 (0.5) 78.1 (1.0) 111.6 (5.2) —
Classic ASHRAE

equation with Tp
from Fossa and
Rolando (2013)

78.9 (2.6) 78.7 (2.6) 79.5 (2.6) 80.9 (2.5) 108.6 (2.3) 115.2 (2.3)

Classic ASHRAE
equation with Tp
from Bernier
et al. (2008)

79.6 (3.4) 79.4 (3.4) 80.2 (3.4) 81.5 (3.4) 109.1 (2.8) 115.7 (2.7)

DST-GenOpt — — — — — 120.6 (7.1)

rectangular geometries. Thus, it cannot size the axisymmetric
configuration shown in the last column of Table 4. EED
requires user-defined average monthly heating and cooling
loads and peak heating and cooling loads to determine the
average and the peak monthly mean fluid temperatures. Peak
heat loads are added to the average heat loads at the end
of each month. It also assumes that the peak heat loads do
not have any influence on the long-term behavior as they are
already considered in the average load.

The next two sizing methods use the ASHRAE sizing
equation but with better evaluations of the temperature penal-
ties based on the methodologies suggested by Bernier et al.
(2008) and Fossa and Rolando (2013). As mentioned previ-
ously, Bernier et al. (2008) suggest to evaluate the tempera-
ture penalties Tp using Qu(gNb − g1)/(2πkgNbH ),while Fossa
and Rolando (2013) suggest a slightly different method where
Tp is equal to Qu(gNb/2π − G)/(kgNbH ) The value of Qu in
these equations is the unbalanced load which is equal to
(qaty + qmtm + qhth)/(ty + tm + th).

The last sizing method uses the Duct ground STorage
(DST) model in the TRNSYS environment as explained by
Ahmadfard et al. (2016). The DST model is typically used
for a known borehole length; it is not a sizing tool. How-
ever, when combined with GenOpt it is possible to find the
optimum (i.e., minimum) borehole length such that the outlet
temperature from the bore field is within the temperature lim-
its, TL and TH . For each iteration, GenOpt makes a new guess
for the borehole length and then it calls the DST model to
do a multi-year simulation. The objective functions as well as
the optimization design parameters are the same as the ones
used by Ahmadfard et al. (2016). The DST model is strictly
valid for an axisymmetric configuration which explains the

choice of the configuration shown in the last column in
Table 4.

For the results reported in Table 4, the g-functions used
in the proposed method and for the evaluation of the tem-
perature penalties are calculated with twelve segments. The
reported temperature penalties and borehole lengths are eval-
uated iteratively with the use of a convergence criterion of
0.1% and an initial guess for the borehole length of 100 m.

Results obtained by the proposed method with and with-
out temporal superposition are very close to each other
(within 0.1%) for nondense bore fields but show slightly
higher differences (1.2% to 1.3%) for denser bore fields. This is
not as high as the maximum difference, around 2.5%, shown
in Figure 5 for 120 boreholes. This is due to the fact that
the maximum difference in the g-function only affects the
qaRga,g term in the sizing equation. This impact is presented
in Table 5 where it is shown that the difference between g-
functions evaluated with and without temporal superposition
does not affect the short time periods and so the monthly and
hourly effective ground thermal resistances of the two models
are identical. Therefore, the main difference is related to the
yearly ground thermal resistances. For nondense bore fields,
the difference in the value of Rga,g is small but for denser
bore fields the difference is in-line with the values shown in
Figure 5. For example, the difference in the value of Rga,g for
the 120-borehole configuration in Table 5 is around 3%. How-
ever, this does not translate into a 3% difference in the bore
field length as Rga,g is multiplied by qa in the sizing equation
(Equation 3). Thus, depending on the weight of the qaRga,g
term in Equation 3, the impact of the difference between
g-functions evaluated with and without temporal superposi-
tion will be more or less significant. In the case reported in
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Table 5. Comparison of the three ground thermal resistances evaluated with and without temporal superposition.

Without temporal superposition With temporal superposition

Bore field geometry 19: (9,1,9) 120: (12 × 10) 19: (9,1,9) 120: (12 × 10)

Length (m) 77.0 106.1 77.1 107.4
Rgh,g (m.K/W) 0.092 0.092 0.092 0.092
Rgm,g (m.K/W) 0.209 0.209 0.209 0.209
Rga,g (m.K/W) 0.555 1.789 0.560 1.844
Calculation time (s) 36 50 240 486

Table 4, the overall difference on the length is of the order of
1.2% to 1.3%. Finally, the last line in Table 5 shows that cal-
culation times with temporal superposition are seven to ten
times longer than without temporal superposition.

The results evaluated without temporal superposition and
the ones obtained using EED with the monthly pulses are in
good agreement except for the L and rectangular bore field
configurations where the differences are 3.7% and 5.2%. As
shown previously, only 1.2% of this difference is related to the
error associated with the generation of g-functions without
temporal superposition. The remaining difference might be
attributed to different modeling approaches.

Table 6 presents the results of a comparison between EED
and the two proposed models with and without temporal
superposition. In this comparison, the annual ground heat
load is assumed to be zero. The results are obtained using 1
and 12 segments for the evaluation of the g-function. It can be
seen that all methods lead to the same length of 63.9 m. This
tends to demonstrate that when there is no annual ground
thermal imbalance, the proposed method can be used with
one segment and without temporal superposition. The calcu-
lation times in the last column in Table 6 show that it is clearly
advantageous to reduce the number of segments and to per-
form the calculations without temporal superposition.

Results presented in Table 4 also show that the bore-
hole lengths obtained using the ASHRAE equation com-
pare favorably well with other methods if the temperature
penalties are evaluated properly. This is in contrast with the
work of Cullin et al. (2015) who reported that the classic
ASHRAE sizing equation evaluated with the original temper-
ature penalty method showed differences ranging from –21%
to 167% when compared to four different systems with oper-
ating data.

The last row of Table 4 is related to the result of the
DST-GenOpt tool for an axisymmetric configuration. The
difference between this method and the proposed method
without temporal superposition is 7.1%. Sizing with the
DST-GenOpt approach is achieved within the TRNSYS
environment using hourly time steps in order to mimic the
three pulse approach. Hence, the hourly ground load con-
tains 87600 hours at –59.0 kW, 744 hours at –146.4 kW and
6 hours at –443.9 kW. Figure 7 shows the evolution of the
outlet fluid temperature from the bore field for the last itera-
tion of the DST-GenOpt approach. As can be seen, the outlet

Fig. 7. Evolution of the outlet fluid temperature for the last
iteration of the DST-GenOpt method.

temperature from the bore field decreases steadily for the
first 10 years, then there are two sudden downward steps
associated with the monthly and hourly pulses before the
fluid temperature reaches a value of 0°C, the minimum
temperature limit.

Finally, it should be mentioned that based on the results
reported in Table 4, the proposed method has, on average, a
2.9% difference with the other four sizing methods.

Convergence criteria, initial guess values and number of
segments
The proposed method is iterative in nature and results depend
on the convergence criteria and initial guess values. The
impact of these two factors are examined for the 12 × 10
sizing problem presented earlier with three different conver-
gence criteria of 0.01%, 0.1%, and 1% and with two initial
guess values for the borehole length, 50 and 200 m. Table 7
presents the results of this analysis which was obtained with-
out temporal superposition and with 12 borehole segments.
As expected, stricter convergence criteria leads to more iter-
ations and longer calculation times. However, the evaluated
lengths do not vary significantly. A 0.1% convergence criteria,
for example, a 0.1 m error for a 100 m borehole, appears to be
a good compromise between accuracy and calculation time.
Results also show that the alternative method converges to
the same value whether the initial guess is significantly lower
(50 m) or higher (200 m) than the final length.

The impact of the number of borehole segments is ana-
lyzed using the same 12 × 10 geometry by varying the
number of segments from 1 to 25 and using 0.1% convergence
criteria. This problem is solved with and without temporal
superposition and results are shown in Figures 8a and 8b. As
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Table 6. Comparison of several methods when there is no annual ground thermal imbalance.

Configuration Method
Number of
segments

Number of
iterations Length (m)

Calculation
time (s)

Proposed method without
temporal superposition

1
12

2
2

63.9
63.9

1.1
34.7

Proposed method with temporal
superposition

1
12

2
2

63.9
63.9

5.1
270.6

EED — — 63.9 1.0

Table 7. Analysis of the effects of various convergence criteria and initial guess values on the results.

Convergence criteria, ε (%) Initial guessed length (m) Number of iterations Final length (m) Calculation time (s)

1 50/200 3/3 106/106 52.9/52.8
0.1 50/200 4/4 106.1/106.1 70.9/70.0
0.01 50/200 5/5 106.07/106.07 87.6/87.4

can be seen, the results obtained with and without temporal
superposition follow the same pattern; the relative differences
in length between 1 and 25 segments are 3.4% and 4% with
and without temporal superposition. The calculation time
in both cases increases exponentially with the number of
borehole segments. However, the calculation times obtained
without temporal superposition are significantly shorter
than the ones obtained using temporal superposition. For
example, for 1 segment, the calculation times are 8 and 3.1s
with and without temporal superposition, respectively. The
corresponding number for 25 segments are 2081 and 213s.
These results are obtained on a computer equipped with an
Intel core i5 processor (2.70 GHz) and 8 GB of RAM. Twelve
borehole segments appear to be a good compromise between

accuracy and calculation time in line with the findings of
Cimmino and Bernier (2014).

It has also been observed that the optimum num-
ber of borehole segments is slightly dependent on the
borehole length. For example, for the same geometry
(12 × 10), if the loads are doubled, the resulting bore-
hole length evaluated without temporal superposition is
197.8 m for one segment and 193.3 m for 25 segments, a
2.3% difference. If the loads are reduced in half, the resulting
borehole length is 55.3 m for one segment and 52.3 m for
25 segments, a 5.7% difference. Thus, it appears that fewer
segments could be used for longer boreholes. This is due
to the fact that borehole end effects are proportionally less
significant for longer boreholes. This fact can be used to

Fig. 8. Borehole length and corresponding calculation time as a function of the number of segments obtained a. without; and b. with
temporal superposition.
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reduce the calculation time of the proposed method. How-
ever, as the length of the boreholes is not known at the
beginning of the iterations, the number of segments should be
optimized during iterations. For example, only one segment
could be used in the first iteration and then the number of
segments could be increased/decreased in the next iterations
based on the evaluated borehole lengths.

The effect of symmetry on calculation time
As a final point regarding calculation time, it is interesting to
examine a bore field composed of randomly placed boreholes
with no symmetry. This was done using a bore field composed
of 120 boreholes which are scattered arbitrarily in an 80 ×
80 m2 ground area with a minimum borehole separation of
6.5 m. The ground heat load and the input parameters are
identical to those reported in Tables 2 and 3. This problem
is solved with convergence criteria of 0.1% using 12 segments
with and without temporal superposition with corresponding
calculation times of 34,070 and 5169s which are, respectively,
about 70 and 100 times longer than the ones for rectangu-
lar equally spaced 12 × 10 bore field (486 and 50s). Thus,
symmetry plays a major role in the reduction of calculation
time.

Short-term effects
It is possible to account for short-term effects associated with
borehole thermal capacity using the same sizing equations
(Equations 3 and 4) with so-called short-term g-functions.
The method used here to evaluate short-term g-functions is
based on the work of Xu and Spitler (2006) which finds its ori-
gin in the method proposed by Yavuzturk and Spitler (1999).
Xu and Spitler (2006) approximated the U-tube geometry
with a series of hollow cylinders representing the fluid, the
fluid convective resistance, the pipe, the grout and the ground.
The outer diameter of the equivalent pipe is simply taken as
the square root of two multiplied by the outer diameter of
the pipe. An equivalent grout thermal conductivity is used
based on the determination of the grout thermal resistance
obtained from the multipole method. Radial heat transfer
from the fluid to the ground is then solved numerically to
obtain g-functions using the definition given by Yavuzturk
and Spitler (1999). Xu and Spitler (2006) have shown that
results obtained with this technique compare favorably well
with the ones obtained with a 2D model representing the real
borehole geometry.

In the current article, the only modification to the Xu and
Spitler (2006) approach is that heat transfer from the borehole
wall to the ground is calculated using the ICS solution. The
required heat transfer rate at the borehole wall is obtained
from the numerical solution and the borehole wall tempera-
ture boundary condition required by the numerical model is
calculated from the ICS solution.

Figure 9 shows the short-time g-function curve obtained
for the borehole described in Table 3. The g-function curve
without short-term effects (for a 12 × 10 bore field) is also
shown in this figure. The two curves merge into the same curve
after a certain time (ln(t/ts ) ≈ −8 in the case of Figure 9. As
shown on Figure 9, g-functions are lower when short-term

Fig. 9. g-functions obtained with and without short-term effects
for a 12 × 10 bore field.

effects are considered. Short-term g-functions are indepen-
dent of borehole length and spacing as well as bore field con-
figuration. Therefore, the evaluated g-functions (illustrated
in Figure 9) can be used for any bore field configurations,
as long as the parameters are identical to the ones specified
in Table 3.

To show the impact of short time effects on the borehole
lengths, results presented in Table 4 are recalculated using
short-time g-functions for the g(t f −t2 ) term (see Equation 4).
The monthly and yearly g-functions are calculated using the
long-term g-functions based on 12 segment boreholes and
without using temporal superposition. As shown in Table 8,
the resulting boreholes are shorter by about 2.8% to 3.9%
when short-term effects are considered. This is to be expected
as borehole thermal capacity will dampen the change in the
borehole wall temperature following a change in the amount
of heat injected into a borehole. These differences are similar
to the ones obtained by Lamarche (2016).

The differences presented in Table 8 are problem depen-
dent and cannot be generalized. In order to further examine
these differences the values of the effective ground thermal
resistances (Equation 4) are presented in Table 9 for the
12 × 10 geometry for peak durations of 1 and 6 hours. As
shown in this table, there are significant differences in the
values of Rgd,g and Rgm,g. For example, for the 6-hour peak
duration, Rgd,g decreases from 0.092 to 0.068 m.K/W while
Rgm,g increases from 0.209 to 0.233 m.K/W. These differences
are mainly due to the fact that short-term g-functions are
slightly lower than the ones evaluated without short-term
effects. The value of Rga,g changes slightly but in this case
the variation is not due to short-term effects but to the fact
that the borehole length has changed (due to short-term
effects) which in turn changes the value of the long-term
g-function. These changes in the three effective ground
thermal resistances reduce the required borehole length by
3.0%. This difference is dependent on the relative strengths of
qa, qm, and qh. Generally, when the value of qh increases when
compared to qa and qm, then the difference in the required
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Table 8. Comparison of borehole lengths obtained with and without short time effects.

Bore field geometry 19: (9,1,9) 25: (1 × 25) 28: (9,1,8,1, 9) 36: (8,1,8,1,8,1,8,1) 120: (12 × 10) 127: Axisymmetric

With short time effects (m) 74.0 73.8 74.6 75.9 102.9 109.5
Without short time effects (m) 77.0 76.8 77.6 78.9 106.1 112.6
Relative difference –3.9% –3.9% –3.9% –3.8% –3.0% –2.8%

Table 9. The effects of short time effects and peak duration on the boreholes lengths of 12 × 10 bore field

6 hours 1 hour
Peak duration
Short term effects Without short term effects With short term effects Without short term effects With short term effects

Length (m) 106.1 102.9 97.6 88.6
Relative difference –3.0% –9.2%
Rgh,g (m.K/W) 0.092 0.068 0.028 –0.039
Rgm,g (m.K/W) 0.209 0.233 0.273 0.340
Rga,g (m.K/W) 1.789 1.777 1.754 1.711
Rb + Rgh,g (m.K/W) 0.292 0.268 0.228 0.161

Fig. 10. Relative length difference with and without short-term
effects.

borehole length with and without short-term effects will
increase.

When the peak duration is only 1 hour, the required bore-
hole length when the short-term effects are considered is 9.2%
shorter than when short-term effects are not considered. As
noted in Table 9, Rgh,g is negative for a 1-hour peak duration,
however, the sum Rb + Rgh,g is positive.

In addition to peak durations of 1 and 6 hours, the same
sizing problem has been checked with peak durations rang-
ing from one hour to 50 hours and the results are shown in
Figure 10. It can be shown that length differences with and
without short-term effects are negligible after 50 hours for this
configuration and load pattern.

Conclusions

This study proposes modifications to the ASHRAE sizing
equation for vertical GHEs. The resultant method uses the
same three pulse methodology as the classic ASHRAE sizing
equation. The three effective ground thermal resistances
corresponding to the three heat pulses are evaluated with the

use of three g-functions. Since g-functions evaluate the ther-
mal interactions between the boreholes, there is no need to
consider the “temperature penalty” present in the ASHRAE
sizing equation. However, an iterative procedure is required as
g-functions depend on the borehole length that is unknown
a priori. One important aspect of the iterative procedure
is that it is able to evaluate new g-functions dynamically
as the solution progresses. Approximately 3 to 5 iterations
are required to obtain a converged solution, thus the pro-
posed methodology requires the evaluation of 9 to 15 single
g-function values. These values are evaluated analytically
using the FLS by discretizing boreholes in axial segments and
without applying any interpolation on the g-function curve
or between pre-determined g-functions. In addition, contrary
to previous works, temporal superposition is not used for
evaluating the g-functions as results show that it does not
have a significant effect on the boreholes length. However,
it affects the calculation time noticeably. For example, for a
12 × 10 bore field sized with 12 segments, the lengths
evaluated with and without temporal superposition have a
1.2% relative difference. However, calculation time is about
10 times longer with temporal superposition. It is also seen
that longer boreholes need fewer borehole segments. This is
due the fact that the boreholes end effects are proportionally
less significant for longer boreholes. It is also concluded that
convergence criteria of 0.1% (0.1 m on a 100 m borehole)
gives sufficiently accurate results with reasonable calculation
time. The proposed methodology is compared against four
other sizing methods including EED, the DST model of
TRNSYS combined with GenOpt and the classic ASHRAE
equation with appropriate temperature penalty calculations.
Six different borehole configurations ranging from a 19 bore-
hole L-shape bore field to a 127 axisymmetric configuration
are used in this comparison. The average relative difference
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between the results of the proposed method and the other
sizing methods is 2.9%. Finally, it is shown that short-term
g-functions can be used to account for borehole thermal
capacity in the proposed method. Short-term effects have an
impact on the hourly and monthly effective ground thermal
resistances. In one particular case studied here, the required
length is 3.0% shorter when short-term effects are considered
for a 6-hour peak duration. When the peak duration is
reduced to 1 hour, this difference increases to 9.2%.
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